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We demonstrate a neural network capable of designing on-demand multiple symmetry-protected bound states in
the continuum (BICs) in freeform structures with predefined symmetry. The latent representation of the freeform
structures allows the tuning of the geometry in a differentiable, continuous way. We show the rich band inversion
and accidental degeneracy in these freeform structures by interacting with the latent representation directly.
Moreover, a high design accuracy is demonstrated for arbitrary control of multiple BIC frequencies by using
a photonic property readout network to interpret the latent representation. © 2021 Chinese Laser Press
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1. INTRODUCTION

The optical bound states in the continuum (BICs) refer to an
exotic class of states that remain perfectly confined despite lying
in a continuous spectrum of radiating waves [1,2]. The lack of
outgoing radiation means these states have a theoretical infinite
lifetime but are unable to be excited by far-field radiation. In
practice, perturbations are introduced intentionally or uninten-
tionally to turn the BICs into leaky resonances with finite albeit
high Q factors [3]. Engineering these modes to leverage the
high quality (Q) factor is benefiting a wide range of applications
such as lasers [4,5], sensors [6,7], and nonlinear optics [8,9].

Recent reports show the BICs arise from the vortex centers
of the polarization field and they carry quantized topological
charges [10]. Merging of multiple BIC points can be used
to achieve robust ultra-high Q factor modes immune to
out-of-plane scattering losses [11]. Moreover, being able to
manipulate multiple BICs might further benefit areas where
highQ factors are desirable at multiple frequencies such as non-
linear optics [12] and multi-wavelength sensing [13–15].

The core idea of realizing BICs is the parameter tuning to
cancel out the far-field radiation. This is mostly achieved by the
sweeping of parametric geometries such as circles, rectangles,
ellipses, or the combination of them. These geometrics can
be easily described and modified by equations with a limited
number of variables and, thus, a limited degree of tunability.
They run into problems with more advanced tuning tasks such
as the manipulation of multiple BICs simultaneously. So far,
arbitrary control of multiple BICs has never been achieved.

The freeform structures optimized by evolutionary algo-
rithms [16,17] and adjoint methods [18,19] show great

potential in the topology optimization of photonic structures
and promise new methods of tuning BICs. They are not bound
by any equations and, thus, offer a limitless degree of tunability,
which may yield designs that outperform those by conventional
geometries [19,20]. However, these algorithms are generally
costly in computational resources. Besides these interactive op-
timization methods, deep neural networks (DNNs) are viable
tools in handling complicated photonic structures [20–22].
There have been some impressive attempts to design freeform
photonic structures using generative adversarial networks
(GANs) [23–27]. A problem with the GANs is the difficulty
in training with the possibility of noisy outputs where extra
filtering and smoothing algorithms are needed to refine the
geometries [24,25]. Another issue with the GANs is that the
desired optical properties are directly linked to the geometrical
shapes described by pixels, which have much higher dimensions
than that of the optical properties such as the transmission and
reflection spectra. This results in converging problems and bad
generalization performance. Furthermore, the structures with
predefined symmetries, which are a critical quality in the field
of photonics, have not been demonstrated by GANs. To make
the DNNs learn and generate the symmetry and parity proper-
ties of the real-life structures is an active research topic in the
machine learning community [28–30]. Special techniques such
as symmetry loss [31] and structured GANs [32] are necessary
to ensure symmetrical outputs. In this work, we demonstrate a
DNN structure based on the variational autoencoders (VAEs)
that can handle freeform photonic structures with predefined
symmetry. Instead of connecting the property to the pixel
representation of the geometries directly, we convert the
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geometries into the latent representation, which can be linked
to the optical properties more easily and, hence, increase the
stability of the inverse design. The latent representation also
allows small perturbations of the geometries, which in turn al-
low continuous manipulation of the photonic properties. With
a property readout network to interpret the latent representa-
tion, we demonstrate arbitrary, on-demand control of multiple
BICs with high accuracy. The band inversion and accidental
degeneracy arising from these symmetrical freeform structures
can also be a platform for further discoveries and innovations.

2. SYMMETRY-PROTECTED BIC IN C4V LATTICE

Consider a photonic crystal with C4v symmetry as shown in
Fig. 1(a). At Γ point and below the diffraction limit, the only
radiation channel is the zeroth-order diffraction, which has an
odd parity under C2 operation. Therefore, any modes with an
even symmetry are decoupled and turned into BICs [1]. As
shown in Table 1, the C4v group has four nondegenerate irre-
ducible representations �A1,A2,B1,B2� and one doubly degen-
erate irreducible representation (E). It is interesting to see
that all the nondegenerate representations are even under C2

transformation. Thus, it is straightforward to conclude that

any nondegenerate modes below the diffraction limit turn into
BICs at Γ point.

Since these BICs are protected by symmetry, their frequen-
cies can be tuned by geometrical perturbations as long as the
symmetry is maintained. The freeform structure with C4v sym-
metry as shown in Fig. 1(a) is studied. We consider a unit cell of
1 μm × 1 μm × 2 μm with the material refractive index
n � 3.5, which corresponds to Si in the infrared region.
The geometry is assumed to have a fixed height of 550 nm
in the air with a mirror symmetry about the z plane.
Hence, the photonic modes can be classified as TE- and
TM-like modes. The unit cell is discretized with a 100 × 100 ×
200 mesh, and the plane wave expansion method is used to
determine the eigenmodes and eigenfrequencies along the high
symmetry points X �0, 0.5� − Γ�0, 0� −M�0.5, 0.5�. The calcu-
lations are implemented with an open-source package MIT
photonic bands (MPB) [33]. The photonic band diagrams
and the corresponding Bloch mode profiles are shown in
Figs. 1(b) and 1(c). The Hz field is plotted for TE-like modes,
and the Ez field is plotted for TM-like modes. The TE2, TE4,
TM1, and TM5 are doubly degenerate modes, as can be verified
from the band diagrams. These mode profiles have an odd par-
ity for C2 transformation. The nondegenerate modes are all
even modes for C2 transformation, and they all lie below
the diffraction limit c∕na, where c, n, and a are the speed
of light, the refractive index of air, and the lattice size, respec-
tively. Hence, they are all symmetry-protected BIC modes. The
Bloch modes of the freeform structures largely resemble the
field profiles of Mie-type resonators. However, they are dis-
torted and deformed with a lot of local features, which are
the key to engineer and fine-tune the BIC frequencies.

Fig. 1. (a) Top, an artistic rendering of the C4v photonic crystal considered. Bottom, planar view of the C4v unit cell and the definition of high
symmetry points. (b) Band diagram for TE-like and TM-like modes. (c) Hz and Ez Bloch mode profiles for TE-like and TM-like modes,
respectively.

Table 1. Character Table for C4v Group

E 2C 4 C 2 2σv 2σd
A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0
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Figure 2(a) shows the transmission spectra at different inci-
dent angles for the geometry in Fig. 1 obtained by rigorous
coupled-wave analysis (RCWA). The 0° incident angle corre-
sponds to the Γ point. We can observe three modes at frequen-
cies 0.63, 0.77, 0.83 in both s polarization and p polarization
[marked by red arrows in Fig. 2(a)]. They correspond to the
TM1, TE2, and TE4 doubly degenerate modes because the s
polarization and p polarization have a 90° rotation relationship,
which matches the symmetries of the doubly degenerate modes
shown in Fig. 1. Other modes, such as the numbered ones in
Fig. 2(a), are nondegenerate, which appear either in s polariza-
tion or p polarization. These modes show vanishing linewidths as
the incident angle approaches 0°. The Q factors for the four
modes highlighted show diverging trends as the incident angle
approaches 0°, which indicates that they are indeed BICs.

3. LATENT REPRESENTATION OF GEOMETRY
USING β-VAE

A VAE structure as shown in Fig. 3 is designed to manage the
freeform structures with C4v symmetry. In the VAE, the input
x passes through two DNNs sequentially, namely the encoder
q�zjx� and the decoder p�xjz�, to output a probability distri-
bution x 0. The latent vector z has a much lower dimension than
the input x. As the data pass through such a bottleneck layer,
they are compressed, and the network is forced to learn an ef-
ficient representation of the input. Data in a much higher di-
mension can be represented by a low dimension vector
faithfully after training. In this study, the input is 64 × 64 pixels
binary images with 1 representing the material and 0 represent-
ing the air. The latent vector z is an array with the
form �z1, z2,…, z10�.

We use the β-VAE [34,35] with a loss function as follows:

L � −Eq�zjx��log p�xjz�� � βDKL�q�zjx�kp�z��: (1)

The first term is the reconstruction loss, which forces the
decoder to represent the input as closely as possible. The second

term is the Kullback–Leibler (KL) divergence between the prior
distribution p�z� and the encoder distribution q�zjx�. It is a
regularization term that forces the latent representation to as-
sume the same standard normal distribution as the prior p�z�.
The resultant latent representation is centered and closely
packed in the latent space, and most importantly, continuous
and interpolable. The β factor imposes extra weight on the KL
divergence, thus increasing the regularization power. Previous
reports show an increase in the β factor can promote the dis-
entanglement of latent representation [35], allowing them to be
more interpretable. In this work, we choose a β factor of 3. The
β-VAE can not only reproduce the training data but also create
new data with the same distribution as the training data. As the
high dimension data are collapsed to a lower dimension, a lot of
the high dimension features and minor details are filtered out.
Hence, the output geometries are naturally smooth with less
ultrafine structures such as sharp corners and isolated islands.
Moreover, the latent representation has similar dimensions with

Fig. 2. (a) Transmission spectra at different incident angles for s polarization and p polarization. The red arrows indicate the doubly degenerate
modes, and the numbered modes are nondegenerate. (b) The Q factors of the BIC modes shown in (a).

Fig. 3. (a) VAE structure used for geometry management. (b) The
training loss for β-VAE. (c) Examples of the β-VAE generated
geometries.
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our optical response, which is easier to link to the optical prop-
erties by DNN.

We use 20,000 randomly generated geometries with C4v
symmetry to train the β-VAE. The training geometries are gen-
erated by applying symmetry operations to random polygons.
The training loss of the β-VAE in Fig. 3(b) shows good con-
vergence, which is an advantage over GANs. Randomly gener-
ated latent vectors are used to test the output of the β-VAE
after the training. Some examples of the output are shown
in Fig. 3(c). The VAE can produce a wide variety of geometries
with different topology while maintaining the perfect C4v sym-
metry. These geometries are obtained without any additional
filtering, but they are smooth with little noise. Since the latent
representation is continuous, a perturbation of the latent vector
Δz results in a perturbation Δx 0 in the output. This is dem-
onstrated in Visualization 1, where we show the change of the
output geometries as the z vector is varied continuously.

To study how the continuous deformation of such freeform
structures influences the photonic band structures, we generate
a random initial geometry and then vary one component of the
latent vector z3 continuously with a step of 0.02. A total num-
ber of 20 geometries are generated, and geometries 8 and 12 are
compared in detail. Geometry 8 is the same as the one depicted
in Fig. 1, and geometry 12 is a slightly deformed version. Their
shapes are shown in Fig. 4(a). The band frequencies at the Γ
point shift smoothly when the geometrical shapes change con-
tinuously, as shown in Fig. 4(b). An interesting phenomenon is
the band crossing during this process. Comparing with the TE
Bloch mode profiles in Fig. 1, we find the mode profiles of TE2

and TE3 are swapped. Between these two shapes, there is an
intermediate shape (geometry 10) where these two bands cross
and form an “accidental degeneracy.” TE2 is a nondegenerate
mode with even parity while TE3 is a doubly degenerate mode
with odd parity. Previous studies show that a Dirac cone with
linear dispersion [36,37] appears when these bands meet. Such
a Dirac cone dispersion plays a vital role in zero-index materials

[38,39] and topological photonics [40], which could be an-
other application for these freeform structures.

The reason for this band crossing can be understood from
the Bloch mode profiles. In Fig. 4(c), the field of TE2 is mostly
localized at the center of the heart-shaped structures; hence, it is
less sensitive as the heart shape deforms. In contrast, TE3 is
more susceptible to such changes because a considerable
amount of field intensity is located at the site of deformation.
Since the amount of the frequency shift is proportional to the
field concentration in the perturbation area [41], the TE2 band
remains mostly unchanged while the TE3 band shifts more
drastically, causing the band crossing. In this geometry, TE1,
TE2, and TE5 are symmetry-protected BICs. The shifting
and crossing of the bands give us a lot of possible combinations
of BICs. Since these shapes are controlled by a latent vector
with 10 dimensions, there are 10 dimensions to fine-tune
the geometries and, hence, the BIC combinations.

We also study the shift of the photonic bands as the geometry
in Fig. 1 is scaled by a factor of 0.5 to 1.2. The band frequencies
atΓ point are shown in Fig. 5(a), and the Blochmode profiles are
shown in Fig. 5(b). Comparing the band order to that of Fig. 1,
we notice drastic band crossing for TM polarization. Two sets of
band crossing [�TM2,TM3� and �TM4,TM5�] are observed
when the scaling factor is varied from 1 to 0.8. TM4 has odd
parity, andTM5 has even parity while bothTM2 andTM3 have
even parity. The crossing ofTM4 andTM5 results in aDirac-like
dispersion while the crossing of TM2 and TM3 would lead to a
double quadratic dispersion as shown in previous reports [36].
These results show great potential for band engineering for pho-
tonic applications.

4. ON-DEMAND MULTIPLE BIC DESIGN

The continuous deformation and scaling of the geometry make
it possible to engineer a large number of BICs. To achieve
the on-demand design of multiple BICs, a property readout

Fig. 4. (a) Shapes of geometry 8 and 12, with the sites of deformation marked by red arrows. (b) The shift of TE-like and TM-like bands at Γ
point as the latent vector is varied continuously (see Visualization 1 for the continuous variation of the geometries). (c)Hz field of TE-like modes for
geometry 12. The inversed bands are grouped by dashed green boxes.
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network is necessary to link the latent representation of geom-
etries to their photonic properties. The whole DNN structure is
shown in Fig. 6(a). The property readout network, consisting
of two convolutional neural networks (CNNs), is connected to
the geometry handling network (β-VAE) by the latent vector z.
The information flow during training is shown in Fig. 6(b). In
process 1, the geometry management network is trained to real-
ize the mapping between the input geometry x, latent space z,
and output geometry x 0. With this mapping established, a total
number of 20,000 z vectors are sampled from the latent space,
and their corresponding geometries are recorded. After that,
their photonic bands at the Γ point are calculated. Then the
BIC frequencies are selected by removing the degenerate
modes. Three lowest BIC frequencies are picked to form the
BIC vector b � �b1, b2, b3�. The z–b pair is used to train the
property readout network. In process 2, the latent vector z is set
as the input and b as the output to train CNN2. This ensures
the forward mapping from the latent vector z to its correspond-
ing b vector. After that, the weights of CNN2 are fixed when
the BIC vector b is fed to the CNN1-z-CNN2 network, and
the weights of CNN1 are updated. This CNN1-z-CNN2 struc-
ture is similar to the tandem network [42] that is used to solve

data inconsistency problems. Since the mapping from physical
property b to the latent vector z is not unique, there might be
converging problems if CNN1 is trained directly. The idea is
that the mapping from z to b is always one to one so that
CNN2 can always converge to one possible solution. After that,
this solution is used as the criteria to train CNN1, which en-
sures the convergence. After all the networks are trained, the
whole DNN can be used for the forward modeling or the in-
verse design, as shown in Fig. 6(c). In the former case, a geom-
etry is fed to the network, and the output is the BIC vector b. In
the latter case, a target b vector is fed to the network, and the
output is the geometry. The detailed parameters of the whole
DNN can be found in the last section of this work. We use
18,000 sets of z–b pairs for training, 1000 for testing, and
the final 1000 for validation. The mean squared error
(MSE) is used for the training of both CNN1 and CNN2.
The training and testing losses are shown in Fig. 7. It can
be seen that the training and testing losses converge after
200 epochs for both CNN1 and CNN2. We use both the val-
idation data set and randomly generated data to test the per-
formance of the network. In Fig. 8(a), the 1000 sets of reserved
validation data are fed to the CNN1-z-CNN2 network, and the
output is compared to the target value. In Fig. 8(b), we generate
1000 random b vectors to test the output of the network. In
both figures, the x axis is the target value, and the y axis is the
output of the DNN. The green bands are defined by
y � x � 15 nm. We can see a strong linear correlation for
the target value and the network output with 99% of the points
lying within the bands of y � x � 15 nm, indicating good de-
sign accuracy, even for randomly generated input.

Next, we show a few specific examples of the inverse design
of multiple BICs. Three sets of random b vectors are generated
and fed to the DNN through the inverse design pathway. The
obtained geometries are simulated to determine their BIC
frequencies. The target value, the value inferred by DNN,
and the value obtained by simulations agree well, as shown in
Fig. 9(a). The insets show the output geometries. Figure 9(b)
shows the band diagrams for the output geometries with the
target BIC frequencies marked by red arrows. Figure 9(c) shows
the corresponding mode profiles at the BIC frequencies. The
BIC frequencies are all nondegenerate modes with an even par-
ity for the C2 transformation, which means they are indeed
BIC states. We observe the maximum discrepancy for b1
and b3 is around 30 nm, which is within the �15 nm range
shown earlier. This discrepancy is around 2.5% of the shortest
operation wavelength (from 1200 nm to 1700 nm), which is

Fig. 5. (a) Shift of TE-like and TM-like bands at Γ point as the
scaling factor is varied. The inset in (a) shows the geometry considered.
(b) The Ez field of TM-like modes for geometry with a scaling factor
of 0.8. The inversed bands are grouped by dashed green boxes.

Fig. 6. (a) Whole DNN structure studied in this work.
(b) Information flow during training, where 1 is the training of
β-VAE, 2 is the training of CNN2, and 3 is the training of CNN1.
(c) Information flow for the forward modeling and the inverse design. Fig. 7. Training and testing losses for (a) CNN2 and (b) CNN1.
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Fig. 8. (a) Correlation between target BIC wavelengths in the validation data set and the output of the DNN. (b) Correlation between randomly
generated target BIC wavelengths and the output of the DNN. The x axis is the target value, and the y axis is the DNN output in both (a) and (b).

Fig. 9. Demonstration of the multiple BIC inverse design. (a) The comparison of the random target BIC wavelengths, DNN output, and numeri-
cal simulation. The inset shows the output geometry of the DNN. (b) Band diagrams for the designed structures. (c) TheHz and Ez field profiles for
the TE and TM BIC states, respectively.
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adequate in actual applications. Moreover, a higher design ac-
curacy can be obtained by higher pixel resolution in the image
representation.

5. PARAMETERS OF THE DNN

Figure 10 shows the parameters of the DNN architecture. The
encoder contains four convolutional (Conv2D) layers and two
linear layers. Its input is a 64 × 64 pixels image with a pixel
value of 0 or 1. For convolutional layers, F is the filter size,
C is the number of channels, P is the padding size, and S
is the stride. I and O are the input and the output for linear
layers. ReLu stands for rectified linear unit activation function.
The decoder consists of two linear layers and four transposed
convolution layers (ConvT2D). Both the decoder and encoder
are based on CNN structures developed for 2D image classi-
fication [43]. The CNN2 has an input dimension of (1, 10),
and it consists of four convolutional layers (Conv1D) and four
linear layers. A batch normalization layer (BN) is applied before
the ReLu to increase the convergence and generalization of the
network. The CNN1 has an input dimension of (1, 3), and it
consists of five ConvT1D layers and three linear layers. The
network is implemented in Python using the Pytorch machine
learning library. The parameters ofCNN1 and CNN2 are based
on an early work with similar data structures [22].

6. CONCLUSION

We demonstrate a DNN structure that can design and engineer
multiple symmetry-protected BICs by manipulating freeform
structures with predefined symmetry. The geometries are rep-
resented by latent vectors, which can then be mapped to the
photonic property by a property readout network. We demon-
strate the on-demand design of three arbitrary BIC frequencies
with high accuracy. We also analyze the nature of complicated
band inverse and accidental degeneracy when such freeform

structures are tuned and scaled continuously, which shows
the potential for further discovery and application.
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